Year	Early Years	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
National Curriculum End of Year Expectations	Count back in 1s	Count back in 2 s	Division facts ($2 \times$ table)	Review division facts ($2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}$ table	Division facts ($4 \mathrm{x}, 8 \mathrm{x}$ tables) 10 times smaller	Division facts (4x, 8x tables) 100, 1000 times smaller	Division facts (up to 12×12)
	Solve halving problems to 10	Count back in 10s	Division facts ($10 \times$ table)	Division facts (4xtable)	Division facts ($3 \mathrm{x}, 6 \mathrm{x}, 12 \mathrm{x}$ tables)	Division facts ($3 \mathrm{x}, 6 \mathrm{x}, 12 \mathrm{x}$ tables) Partition to divide mentally	Partition to divide mentally
	Solve sharing problems to 10	Halves up to 10	Halves up to 20	Halve two digit numbers	Halve larger numbers and decimals	Halve larger numbers and decimals	Halve larger numbers and decimals
		Count back in 5 s	Division facts ($5 \times$ table)	Division facts (8xtable)	Division facts (3x, 9x tables)	Division facts (3x, 9x tables) 100, 1000 times smaller	Division facts (up to 12×12)
		Halve multiples of 10	Count back in 3s	Division facts ($3 \times$ table)	Division facts (11x, 7x tables)	Review division facts (11x, 7x tables) Partition decimals to divide mentally	Partition to divide mentally
		How many 2s? 5s? 10s?	Review division facts (2x, 5x, 10x table)	Division facts ($6 \times$ table) or review others	Division facts (6x, 12x tables)	Review division facts ($6 \mathrm{x}, 12 \mathrm{x}$ tables) Halve larger numbers and decimals	Halve larger numbers and decimals
Written Methods	Mark making	Pictorial representations and arrays with the support of the teacher.	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	Write and calculate mathematical statements for \div using the x tables they know progressing to formal written methods.		Divide numbers up to 4 digits by a one-digit $194+6$ number using the formal written method of short division and interpret remainders appropriately for the context $\begin{aligned} & \frac{32}{6} \\ & 619^{12} \\ & 192+6 \\ & =32 \end{aligned}$	Divide numbers up to 4 -digits by a two-digit whole number using the formal written method of short division where appropriate for the context$\begin{aligned} & 564 \div 13 \\ & 43 \mathrm{r} 5 \\ & 1 3 \longdiv { 5 6 4 } \end{aligned}$1 13 2 25 4 52 5 130 8 104 10 260
Developing Conceptual Understanding	sharing into 2 groups and by grabbing groups of 2	$6 \div 2=3$ by sharing into 2 groups and by grabbing groups of 2 How many $2 s$?	$15 \div 3=5$ in each group (sharing) Link to fractions $15+3=5$ groups of 3 (grouping) $10+2=5$ Use language of division linked to tables \square How mary 2s?	Grouping using partitioning $43 \div 3$ If I know 10×3... Use language of division linked to tables \square How many \quadmphen 0 10 20 $3 s$?\qquad	Grouping using partitioning 196 $\div 6$ If I know $3 \times 6 \ldots$ then $30 \times 6 \ldots$ Chunking up' on a number line $196 \div 6=32$ r 4 Use language of division linked to tables \square	$192 \div 6$ using place value counters to support written method 3 groups so that is 30×6, exchange remaining 10 for ten 1 s So $192+6=32$	$564 \div 13=43$ r $5=43 \frac{5}{13}=43.38$... $1 3 \longdiv { 5 6 4 . 0 ^ { 3 } 0 }$ Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context $=43 \text { r } 5=43 \frac{5}{13}=43.4 \text { (to } 1 \mathrm{dp} \text {) }$
With jottingsin your head	Solve one-step problems involving sharing by calculating the answer using concrete objects, pictorial representations with the support of the teacher	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods	Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers Recognise and use factor pairs and commutativity in mental calculations	Multiply and divide numbers mentally drawing upon known facts Multiply and divide whole numbers and those involving decimals by 10,100 and 1000	Perform mental calculations, including with mixed operations and large numbers
Just know it!	Count in multiples of twos	Count in multiples of twos, fives and tens	Recall and use x and \div facts for the 2,5 and $10 \times$ tables, including recognising odd and even numbers.	Recall and use x and \div facts for the 3,4 and 8 times tables.	$\begin{aligned} & \text { Recall } \mathrm{x} \text { and } \div \text { facts for } \mathrm{x} \text { tables } \\ & \text { up to } 12 \times 12 \text {. } \end{aligned}$	Recall prime numbers up to 19 know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	

